Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
algorithms [2020/07/15 00:03]
paul [Maximum subarray]
— (current)
Line 1: Line 1:
-====== Algorithms ====== 
- 
-An algorithm is a well-defined computational procedure that takes in a set of values as inputs and produces a set of values as outputs. An algorithm is thus a sequence of computational steps that transform input into output. 
- 
-===== Terminology ===== 
- 
-**Nondecreasing order** = an ordering where the next value is greater than or equal to the previous. Ex. \\ 
-For values $x(n)$ and $x(n+1),\ x(n+1)>=x(n)$ 
- 
-**Instance** = an instance is a set of inputs to an algorithm that satisfy the input the input requirements. 
- 
-**Correct** = an algorithm is said to be **correct** if, for every input instance, the computation halts when the correct output has been calculated. 
- 
-**Convex Hull** = the smallest convex polygon that contains all points in a set of numbers that lie on a plane. 
- 
-**NP-complete problem** = a problem for which there is currently no efficient algorithm that solves it, neither is there a proof that proves that the algorithm exists. 
- 
-===== Proving an Algorithm ===== 
- 
-To prove an algorithm works, one way is by induction.  
- 
-Start with the loop invariant, which is the subset of the input that is acted upon by the algorithm.  
- 
-Then check for correctness in each of the following parts of the algorithm: 
- 
-**Initialization** - Is it true prior to the first iteration of the loop?\\ 
-**Maintenance** - Is it true at the start of the loop and also true at the end of the loop?\\ 
-**Termination** - Is it true at the end of the loop? 
- 
-===== Analysis ===== 
- 
-Analyzing an algorithm is predicting how much resources it will use. You have to model the implemented technology.  
- 
-**Input size** - A measure of the input must be selected that has the most significant impact on the resources required for an operation. For instance in a multiplication algorithm the input size should be number of bits used in the input numbers. 
- 
-**Running time** - This should be a machine independent number. Number of primitive steps executed. 
- 
-===== Worst-case and average-case analysis ====== 
- 
-An algorithm's running time is dependent on the input data and there will be a best case, average case and worst case running time. The average case is often roughly as bad as the worst case. For instance with insertion sort. 
- 
-Order of growth if the rate of growth of the running time. We consider the leading, most significant term of the formula of the worst case running time, called theta notation. 
- 
-For an algorithm with a running time of $an^2 + bn + c$ the theta notation would be $Θ(n^2)$ 
- 
-===== Sorting Algorithms ===== 
- 
-Here's a breakdown of different sorting algorithms. There's sorting algorithms 
-that sort in place, rely on element comparisons, others that don't. 
- 
-{{ ::sort_perf.png?direct&400 |}} 
- 
- 
-==== Insertion Sort ==== 
- 
-For an unsorted list A of n length, loop through a growing subset of A by comparing the last element of the subset with each previous element and compare. If greater/smaller swap elements and iterate through again through a subset that is 1 larger than the previous.  
- 
-<code> 
-1. for j = 1 to n 
-2.     key = A[j] 
-3.     i = j-1; 
-4.     while i > 0 and key < A[i] 
-5.        A[i+1] = A[i] 
-6.        i-- 
-7.     A[i+1] = key 
-</code> 
- 
-==== Selection Sort ==== 
- 
-Find the smaller number and place it in A[1]. Then find smallest number in A[2..n] and place it in A[2]. Repeat 
- 
-<code> 
-1. for i = 1 to A.length-1 
-2. //find the smallest number in A(i to n) 
-3. cur_smallest_index = i 
-4. for j = i+1 to A.length 
-5. if A[j] < A[cur_smallest_index] 
-6. cur_smallest_index = j 
-7. A[i] = temp 
-8. A[i] = A[cur_smallest)index] 
-9. A[cur_smallest_index] = temp; 
-</code> 
- 
-==== Merge Sort ==== 
- 
-Merge sort is an O(n lg n) sorting algorithm that uses the dive and conquer 
-paradigm. 
- 
-{{ ::merge_sort.png?direct&400 |}} 
- 
-==== Heap Sort ==== 
- 
-Heap sort is an O(n lg n) sorting algorithm that sorts in place with a constant 
-number of array elements stored outside the array at any time. 
- 
-Heapsort uses a data structure called a "heap" to manage information. 
- 
-{{ ::heapsort_heap.png?direct&400 |}} 
- 
-A heap is a binary-tree that consists of a root, and parent nodes that have up 
-to two child nodes. The math to retreive the the parent, left element or right 
-element of a node is really simple.  
- 
-**Parent** - $return\lfloor i/2 \rfloor$\\ 
-**Left**   - $return 2*i$\\ 
-**Right**  - $return 2*i+1$\\ 
- 
-There are two kinds of binary heaps, **max-heaps** and **min-heaps**. In both 
-kinds the values in the nodes satisfy a **heap property**. In **max-heap** the 
-**max-heap property** is that for every node $i$ other than the root,  
- 
-$A[Parent(i)]\geq A[i]$ 
- 
-For **min-heap** the **min-heap property** is that for every node $i$ other than 
-the root,  
- 
-$A[Parent(i)]\leq A[i]$ 
- 
-There are a set of operation algorithms that are used in conjuction with heaps. 
-They are as follows: 
-   * Max-Heapify 
-   * Build-Max-Heap 
-   * Heapsort 
-   * Max-Heap-Insert, Heap-Extract-Max, Heap-Increase-Key, Heap-Maximum 
- 
-=== Max-Heapify === 
- 
-Runs in O(lg n), whose inputs are A and index i into the array. When it is 
-called, Max-Heapify assumes that the binary trees rooted at Left(i) and Right(i) 
-are max-heaps, but that A[i] might be smaller than its children. Max-Heapify 
-lets the A[i] value "float" down so that the subtree rooted at index i obeys the 
-max-heap property. 
- 
-  - Is index left smaller than A.heap-size and A[l] > A[i]? 
-    - If yes, largest = l 
-  - Else, largest = i  
-  - Is index right smaller than A.heap-size and A[r] > A[i]? 
-    - If yes, largest = r 
-  - Else, largest = i 
-  - If largest != i 
-    - exchange A[i] with A[largest] 
-    - Max-Heapify(A, largest) 
- 
-=== Max-Heap-Insert === 
- 
-Runs in $O(lg\ n)$ time. 
-{{ ::max-heap-insert.gif?direct&400 |}} 
- 
-<code> 
-Max-Heap Insert. Input: heap array A, with data from 1 to length, element to insert p 
-   // stuff the element at the end of the heap array 
-1. A[length+1] = p 
-   // iterate up through the heap 
-2. int i = length + 1; 
-3. while i >= 0 
-   // check if the parent node of our inserted element is less than it.  
-4.    if (i/2 < p) 
-        // swap the inserted element with its parent 
-5.      A[i] = A[i/2] 
-6.      A[i/2] = p 
-7.      i = i/2 
-8.    else 
-9.      break 
-</code> 
- 
-=== Build-Max-Heap === 
- 
-Build-Max-Heap uses Max-Heapify to a bottom-up manner to convert an array 
-A[1..n], where n = A.length, in a max-heap. This procedure goes through the 
-non-leaf nodes of the tree ($A[\lfloor n/2\rfloor..1]$) and runs Max-Heapify on 
-each one. 
- 
-<code> 
-Build-Max-Heap(A) 
-1. A.heap-size = A.length 
-2. for i = [A.length/2] down to 1 
-3.  Max-Heapify(A,i) 
-</code> 
- 
-=== Heapsort === 
- 
-Heapsort works by building a max heap and then deconstructing it in order which 
-in turn constructs a sorted array! Super neat and works in O(n lg n) time. 
- 
-The algorithm works as follows: 
- 
-<code> 
-Heapsort(A) 
- 
-1. Build-Max-Heap(A) 
-2. for i = A.length down to 2  
-3.  Exchange A[1] with A[i] 
-4.  A.heap-length --  
-5.  Max-Heapify(A) 
-</code> 
- 
-{{ ::heapsort.png?direct&600 |}} 
- 
-=== Quicksort === 
- 
-Quick sort selects a random location within the array called a pivot. 
- 
-Then it creates two lists, one containing all elements smaller than the pivot, and one containing all elements greater than the pivot.  
- 
-Then it recursively calls its with each of those two new lists. When the lists end up being only one element long, it all gets merged. 
- 
-{{:pasted:20200710-023220.png?400}} 
- 
-==== Priority Queue ==== 
- 
-Apparently heapsort is great and all, but quicksort beats it. What people do use 
-is the heap data structure, with its most popular application being a priority 
-queue. A priority queue is a data structure that contains a set of keys sorted 
-by their priority. We use the following procedures when utilizing priority 
-queues. 
- 
-  * Insert 
-  * Find-Max 
- 
-There are others that you can implement, but will make it difficult to address a 
-element within the queue(([[https://www.youtube.com/watch?v=-WEku8ZnynU|Priority 
-Queues]])). 
- 
-  * Delete-Max 
-  * Change-Key 
- 
-===== Divide and conquer ===== 
- 
-https://leetcode.com/explore/learn/card/recursion-ii/470/divide-and-conquer/2897/ 
- 
-Many algorithms are recursive, they call themselves recursively to deal with closely related sub-problems.  
- 
-**Divide** - divide the problem into smaller subsets of the big set 
- 
-**Conquer** - conquer the subproblems 
- 
-**Combine** - combine the solutions to come up with the main solution of the bigger problem 
- 
-A recurrence is an equation or inequality that describes a function in terms of its value of smaller inputs. 
- 
-Methods for solving recurrences: 
-    * **substitution method** guess a bound and then use mathematical induction to prove our guess correct 
-    * **recursion-tree method** convert the recurrance into a tree whose nodes represent the costs incurred at various levels of the recursion.  
-    * **master method** provides bounds for recurrences of the form $T(n) = aT(n/b) + f(n)$ where $a \geq 1,\ b\ > \ 1$ and $f(n)$ is a given function. 
- 
-{{:pasted:20200708-194123.png?400}} 
- 
-==== Binary Search Tree Validation ==== 
- 
-Validating a binary search tree can be solved with a divide and conquer approach. We check each node against an upper and lower bound. We then recurs and check both children. 
- 
-{{:pasted:20200709-181958.png?400}} 
- 
- 
-===== Greedy Algorithms ===== 
- 
-A greedy algorithm is used to find optimal soltions - minimum or maximums. 
-Problems are solved in stages, with each stage choosing the optimal solutions. 
-If a solution is found, add it to your solutions. 
- 
-n = 5 
- 
-a = { a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, a<sub>4</sub>, a<sub>5</sub> } 
-<code> 
-1. Algorithm Greedy(a,n) 
-2. for i=1 to n do: 
-3.    x = Select(a) 
-4.    if Feasible(x) Then: 
-5.        Solution = Solution + x 
-</code> 
- 
- 
-===== Sliding Window ===== 
- 
-An approach for scanning through data is to use a sliding window technique. 
- 
-For example, take this problem: find the length of the longest substring without repeating characters. Ex. Input: "abcabcbb" output = 3 (abc) and for "vadva" output = 3 (vadv) 
- 
-To do this we have to scan through the input string while keeping track of the characters used. One such answer is as the following: 
- 
- 
-${\rm L{\small ONGEST}-S{\small UBSTRING}} (string)$ 
-<code> 
-   // our sliding window will be bound by i and j 
-1. int i = 0; j = 0; max = 0 
-   // this is our hash table that contains a flag for every character 
-2. bool characterArray[128] = {false} 
-   // iterate up starting from i = 0 
-3. for int j from 0 to < string.length 
-       // if we've never seen this character before 
-       // and tally our max and update our character hash key   
-4.     if characterArray(string[j]) = false  
-5.         max = (max > (j+1-i)) ? max : (j+1-i) 
-6.         characterArray(string[j]] =  true) 
-       // if we have seen it before, reset it, and slide i forward one 
-       // and try again 
-7.     else 
-8.         characterArray(string[i]] = false) 
-9.         i++, j-- 
-10. return max 
-</code>  
- 
-===== Growth of Functions ===== 
- 
-Asymptotic efficiency is when we use an input size large enough to make only the growth of the running time relevant. 
- 
-==== Θ-notation ==== 
- 
-Worst case running time of an algorithm. 
- 
-$$Θ(g(n)) = \{f(n)\ :\ there\ exist\ positive\ constants\ c_1,\ c_2,\ and\ n_0\ such\ that\\\ 0 \le c_1*g(n)\le f(n) \le c_2*g(n)\ for\ all\ n\ \ge\ n_0\}$$ 
- 
- 
-==== O-notation ==== 
- 
-O(g(n)) is defined as the set of functions which grow no faster than g(n). 
- 
-$$0(g(n))\ =\ \{ f(n)\ :\ there\ exist\ positive\ constants\ c\ and\ n_0\ such\ that\\\ 
- 0\leq f(n) \leq c*g(n)\ for\ all\ n\geq n_0\}.$$ 
- 
-or 
- 
-$O(g(n))={f(n)\ :\exists\ c>0,\ n_0>0 \ni 0\leq f(n) \leq\ c*g(n) \forall n\geq n_0}$ 
- 
-Example(([[https://www.youtube.com/watch?v=lRD35H39o_E|Video on Asymptotic Notation: Definitions]] )): 
- 
-{{ ::bigo_1.png?direct&400 |}} 
- 
-Using this example of $f(n)=5n$ and $g(n)=n$ we can prove that $O(g(n))=n$.  
- 
-The definition of $O(g(n))$ is:  
- 
-$f(n)\in O(g(n))\iff \exists c>0,n_0\ni \forall n \geq n_0,f(n)\leq c*g(n) $ 
- 
-Using this definition we can prove that $f(n)$ is a member of $O(g(n))$:  
- 
-$n\in O(g(n)) \iff \exists c>0, 5n \leq c*n $ 
- 
-By substituting constant c = 6: 
- 
-$n\in O(g(n)) \iff \exists 6>0, 5n \leq 6*n$ 
- 
-==== Ω-notation ==== 
- 
-Ω notation provides an **asymptotic lower bound**. For a given function $g(n)$, we denote by $Ω(g(n)$ (pronounced "big-omega of g of n" or "omega of g of n") the set of functions 
- 
-$$Ω(g(n))=\{f(n)\ :\ there\ exist\ positive\ constants\ c\ and\ n_0\ such\ that\\\ 
-0\leq c*g(n)\leq f(n)\ for\ all\ n\geq n_0\}$$. 
- 
-==== o-notation ==== 
- 
-We use o-notation to denote an upper bound that is not asymptotically tight. We define $o(g(n))$ as the set: 
- 
-$$o(g(n)) = \{f(n)\ :\ for\ any\ positive\ constant\ c>0,\ there\ exists\ a\ constant\\\ 
-n_0>0\ such\ that\ 0\leq f(n)\ < c*g(n)\ for\ all\ n \geq n_0\}.$$ 
- 
-===== Backtracking ===== 
- 
-Backtracking is an algorithm that looks at all possible solutions for a problem 
-and evaluates each one. 
- 
-===== Review ===== 
- 
-==== Passing Yearbooks ==== 
- 
-We are giving an array that represents the parth a yearbook will take to get signed. The index of each element represents the student. We optimize by keeping track of what students are part of a circuit of signatures. Those student's path do not then need to be calculated. 
-     
-==== First Missing Positive ==== 
- 
-This a problem that requires us to use constant extra memory, forcing us to use the input array itself to encode more data on it without losing the element information. Information about key assumptions must be had. 
- 
-The minimum positive element is going to be anywhere between 1 and n+1. Here is why. 
-If we have the perfectly ordered array with n = 5: 
-[1 2 3 4 5]  
-The next positive element is 6 (n+1).  
-The smaller possible positive element is going to be 1. This means our range spans the same number of elements as we have in the input. Which means if there was a way to overlay this boolean state of whether or not we have seen this number in the array, we can solve this problem with no further memory required. 
- 
-We do this in three steps: 
- 
-First pass: 
-Search for a 1, and if we find any numbers out of possible solutions (negative or greater than n), we reset them to 1. 
- 
-Second pass: 
-Map the value of each element to its index and then set that value to negative if present in the array. Hard problems would not be hard if they were easy to explain. 
- 
-Thirst pass: 
-Look for the first non present negative number. If not found, handle the edge case and return n+1. 
- 
-YOU GO THIS! 
- 
-==== Permutations and Combinations ==== 
- 
-Theres like... all these different kinds of permutations and combinations with repetitions, with unique values, etc. 
- 
-=== Unique permutations with unique result === 
-https://www.youtube.com/watch?v=9lQnt4p7_nE 
-  - Sort input candidates. 
-  - Make a boolean flag array to track used elements. 
-  - Recurse over the canditations, choosing and building a solution, and then unchoosing. 
-  - If the next option is the same, skip it. 
- 
- 
-==== Power Function ==== 
- 
-Implement your own power function. The following is the naive algorithm and takes too much time: 
- 
-<code c> 
- 
-class Solution { 
-public: 
-    double myPow(double x, int n) { 
-         
-        double ans = 1; 
-         
-        if(n == 0) 
-            return 1; 
-         
-        for(int i = 1; i <= abs(n); i++) 
-        { 
-            ans = x * ans; 
-        } 
-         
-        if(n < 0) 
-            ans = 1/ans; 
-         
-        return ans; 
-         
-    } 
-};</code> 
- 
-{{::screen_shot_2020-07-08_at_11.55.31_am.png?400|}} 
- 
-<code c> 
-class Solution { 
-public: 
-    double fastPow(double x, long long n) 
-    { 
-        if ( n == 0) 
-            return 1.0; 
-        double half = fastPow(x, n / 2); 
-        if( n % 2 == 0) 
-        { 
-            return half * half; 
-        } 
-        else 
-        { 
-            return half * half * x; 
-        } 
-    } 
-     
-    double myPow(double x, int n) { 
-        long long N = n; 
-        if(N < 0) 
-        { 
-            x = 1/x; 
-            N = -N; 
-        } 
-         
-        return fastPow(x, N); 
-    } 
-};</code> 
- 
- 
-==== Remove Dupes from sorted array ==== 
- 
-Did a vector erase first but that wasn't ideal. I then learned how to do it with 
-a two pointer apprach. First pointer is a "last valid" location and second 
-pointer sweeps through array. As it sweeps and find good ones, it swaps them 
-with the valid.  Valid then becomes my new array size. 
-     
-==== Search in a Rotated Array II.  ==== 
- 
-Really interesting one cause theres dupes and rotatations. Idea is to split the 
-array and based on its bounds, you have 3 posssible situations: 
-  * You have a normal sorted list cause left bound smaller than right bound. Do a normal bin search 
-  * Left bound is == to right bound, do a linear search 
-  * You have a pivot somewhere. You check to see if the left array is sorted right. if it is, check to see if your target is in it. If it is, search in it.  
-  * If it isn't in it, it's gotta be on the other side!  Remove duplicates from a sorted list 
- 
-==== Partition List ==== 
- 
-Make sure elements greater. Had a hard time with this one 
-because I picked a bad approach from the start. I was moving elements to the back of 
-the list if they met a certain condition. Problem was that i entered an infinite 
-loop because i would get to the nodes i pushed back and keep pushing them back. 
-I came up with a better one pass solution after i redid it. 
- 
-==== Maximum Subarray Greedy ==== 
-This problem can be solved amazingly easily in a one pass greedy approach.  
-You keep track of a local maximum that can reset, and a global maximum.  
- 
-{{:pasted:20200711-155528.png?500}} 
- 
-<code cpp> 
-int maxSubArray(vector<int>& nums) { 
-    int cur_max = nums[0], max_out = nums[0]; 
-     
-    for(int i = 1; i < nums.size(); i++) 
-    { 
-        cur_max = max(nums[i], cur_max + nums[i]); 
-        max_out = max(cur_max, max_out); 
-    } 
-    return max_out; 
-} 
-</code> 
- 
-==== Maximum subarray ==== 
-[[https://www.youtube.com/watch?v=yBCzO0FpsVc|Good video here.]] 
- 
-{{:pasted:20200710-033351.png?800}} 
- 
-The maximum subarray problem can be solved using divide and conquer. 
- 
-By breaking up the input array into two subarrays of $n/2$ length as follows: 
-  * A[low..mid] 
-  * A[mid+1..high] 
-   
-The maximum subarray A[i..j] can only be located in one of 3 places; in the 
-first one, crossing the middle, or the end. To solve this equation we must find 
-the maximum subarray in each of those 3 places and simply pick the biggest one. 
- 
-Theres lots of little details in the maxCross function. Especially with dealing with finding the maximum of the subarrays when you have negative numbers. Where you start on the mid line counts. You had to go mid to left and mid+1 to the right. if you go mid-1 to the left you're screwed. 
- 
-**Find-Max-Crossing-Subarray Algorithm** 
- 
-<code cpp> 
-int maxCross(vector<int>&nums, int& l, int &mid, int& r) 
-{ 
-    // We don't have to do bounds checks because we know l won't equal r,  
-    // because that's check for in the caller function. 
-    // With that knowledge we can set max_l and max_r both to INT_MIN's cause 
-    // I know there is going to be at least one element in each. You can also  
-    // set to nums[mid] and nums[mid+1] 
-    int max_l = INT_MIN, max_r = INT_MIN; 
- 
-    // find max left 
-    int sum = 0; 
-    for(int left = mid; left >= l; left-- ) 
-    { 
-        sum += nums[left]; 
-        max_l = max(sum, max_l); 
-    } 
-    // find max right 
-    sum = 0; 
-    for(int right = mid+1; right <= r; right++ ) 
-    { 
-        sum += nums[right]; 
-        max_r = max(sum, max_r); 
-    } 
-    // return the added sum. 
-    return max_l + max_r; 
-} 
- 
-int maxSub(vector<int>& nums, int l, int r) 
-{ 
-    if(l == r) 
-        return nums[l]; 
-    int mid = (l+r) / 2;  
-    int max_left  = maxSub(nums, l, mid); 
-    int max_right = maxSub(nums, mid + 1, r); 
-    int max_cross = maxCross(nums, l, mid, r); 
-    return max(max_left, max(max_right, max_cross) ); 
-} 
- 
-int maxSubArray(vector<int>& nums) { 
-    if(nums.size() == 0) return NULL; 
-    return maxSub(nums, 0, nums.size()-1); 
-} 
-</code> 
- 
-This problem can also be solved very easily with a greedy version. [[#Maximum Subarray Greedy]] 
- 
-==== Longest Substring Without Repeating Characters ====  
- 
-Find the longest substring without repeating characters. Cute use of an unordered_set to keep track of seen characters while implement two pointers for a sliding window. The sliding window is your valid substring. You have a left and right pointer. Advance the right pointer and if the character is not in the set, great, ans = max(right - left, ans). If the character is found in the set, remove the character at the left pointer, advancing the left and try again. Point is you keep advancing the left pointer till you're good to advance the right. Worst case, the left pointer will go all the way to the right and you start with an empty set. Cool! 
- 
-<code cpp> 
-class Solution { 
-public: 
-    int lengthOfLongestSubstring(string s) { 
-        unordered_set<char> seen; 
-         
-        int i = 0, j = 0, n = s.length(), ans = 0; 
-         
-        while(i < n && j < n) 
-        { 
-            if( seen.find(s[j]) == seen.end() ) 
-            { 
-                seen.insert(s[j++]); 
-                ans = max(ans, j - i); 
-            } 
-            else  
-            { 
-                seen.erase(s[i++]); 
-            } 
-        } 
-        return ans; 
-    } 
-}; </code> 
- 
-====  Longest Palindromic String ===== 
- 
-Tricky sonofgun. Easiest way is to brute force, and check if every possible substring is a palindrome. 
- 
-Next best thing is O(n²) solution by doing a two pass. First pass you check every character and go middle out, next pass find any double characters and then middle out them. 
- 
-{{:pasted:20200715-000341.png?500}} 
  
  • algorithms.1594771426.txt.gz
  • Last modified: 2020/07/15 00:03
  • by paul